Product of binary relations

phd. Béla Finta

associate professor "Petru Maior" University of Tg. Mures, Romania

Let $I \neq \emptyset$ be a set of indices, $(X_i)_{i \in I}$ and $(Y_i)_{i \in I}$ two families of sets. Let us consider the binary relations $\rho_i = (X_i, Y_i, G_i)$, $i \in I$, where G_i is the graph of ρ_i . At the same time we take the cartesian products $X = \prod X_i$ and $Y = \prod Y_i$. We mention that, when I is a finite set, then there exist the cartesian products X and Y, but when I is an infinite set, then we need the axiom of choice to the existence of the cartesian products X and Y.

Definition 1. We will say that the element $x = (x_i)_{i \in I} \in \prod_{i \in I} X_i$ is in the relation ρ with the element $y = (y_i)_{i \in I} \in \prod_{i \in I} Y_i$, denoted by $x\rho y$, if for all $i \in I$ the elements $x_i \in X_i$ are in the relation ρ_i with $y_i \in Y_i$, i.e. $x_i \rho_i y_i$ for every $i \in I$.

The relation ρ we will call the product of the binary relations $(\rho_i)_{i\in I}$ and we will denote by $\rho = \prod_{i\in I} \rho_i$. We can observe that the graph of the relation ρ is the set $G \subset X \times Y = \left(\prod_{i\in I} X_i\right) \times \left(\prod_{i\in I} Y_i\right)$ given by $G = \{(x,y)/x = (x_i)_{i\in I} \in \prod_{i\in I} X_i = X, y = (y_i)_{i\in I} \in \prod_{i\in I} Y_i = Y \text{ and } x_i\rho_iy_i \text{ for every } i \in I\}.$

So the product relation is $\rho = (X, Y, G)$.

Proposition 1. The element $(x, y) \in G$ if and only if $((x_i, y_i))_{i \in I} \in \prod_{i \in I} G_i$.

Proof. The element $(x, y) \in G$ if and only if $x_i \rho_i y_i$ for all $i \in I$, i.e. $(x_i, y_i) \in G_i$ for every $i \in I$, which means that $((x_i, y_i))_{i \in I} \in \prod_{i \in I} G_i$.

Let $A \subset X$ be a subset of X.

Definition 2. The set $\rho(A) = \text{Im}(A) = \{y \in Y | \text{ there exist } x \in A \text{ such that } x\rho y\}$ we will call the direct image of the set A by the relation ρ .

Proposition 2. The following assertions are true:

- 1. $\rho(\Phi) = Im(\Phi) = \Phi;$
- 2. If $A \subset X$ and $A' \subset X$ are two subsets of X, then:
 - a) $A \subset A'$ implies $\rho(A) \subseteq \rho(A')$;

b) $\rho(A \cup A') = \rho(A) \cup \rho(A');$ c) $\rho(A \cap A') \subseteq \rho(A) \cap \rho(A').$

Proof. The proof is standard.

For every $i \in I$ let us consider the subsets $A_i \subset X_i$ and $A = \prod_{i \in I} A_i \subseteq \prod_{i \in I} X_i = X$.

Proposition 3. We have $\rho(A) = \prod_{i \in I} \rho_i(A_i)$.

Proof. The element $y = (y_i)_{i \in I} \in \rho(A)$ iff there exists $x = (x_i)_{i \in I} \in \prod_{i \in I} A_i$ such that $x \rho y$, i.e. for every y_i there exist $x_i \in A_i$ such that $x_i \rho_i y_i$, which means that $y_i \in \rho_i(A_i)$ for every $i \in I$, so $y = (y_i)_{i \in I} \in \prod_{i \in I} \rho_i(A_i)$.

Let $B \subset Y$ be a subset of Y.

Definition 3. The set $\rho^{-1}(B) = \{x \in X \mid \rho(x) \in B\}$ we will call the inverse image of the set B by the relation ρ .

Proposition 4. If $B \subset Y$ and $B' \subset Y$ are two subsets of Y, then the following assertions are true:

- 1. $B \subseteq B'$ implies $\rho^{-1}(B) \subseteq \rho^{-1}(B')$;
- 2. $\rho^{-1}(B) \cup \rho^{-1}(B') = \rho^{-1}(B \cup B');$
- 3. $\rho^{-1}(B \cap B') = \rho^{-1}(B) \cap \rho^{-1}(B');$

4.
$$\rho^{-1}(Y) = X$$
.

Proof. The proof is standard.

For every $i \in I$ let us consider the subsets $B_i \subset Y_i$ and $B = \prod_{i \in I} B_i \subset \prod_{i \in I} Y_i = Y$.

Proposition 5. We have $\rho^{-1}(B) = \prod_{i \in I} \rho_i^{-1}(B_i)$.

Proof. The element $x = (x_i)_{i \in I} \in \rho^{-1}(B)$, iff $\rho(x) \in B = \prod_{i \in I} B_i$, i.e. $\rho_i(x_i) \in B_i$ for every $i \in I$, which means that $x_i \in \rho^{-1}(B_i)$ for every $i \in I$, therefore $x = (x_i)_{i \in I} \in \prod_{i \in I} \rho_i^{-1}(B_i)$.

Let us consider the sets $(Z_i)_{i\in I}$ and the binary relations $\gamma_i = (Y_i, Z_i, H_i), i \in I$, where H_i are the graph of the binary relations γ_i . Let us denote by γ the product of the binary relations $(\gamma_i)_{i\in I}$, i.e. $\gamma = \prod_{i\in I} \gamma_i$, with the graph $H = \{(y, z) \mid y = (y_i)_{i\in I} \in$ $\prod_{i\in I} Y_i = Y, z = (z_i)_{i\in I} \in \prod_{i\in I} Z_i = Z$ and $y_i\gamma_i z_i$ for every $i \in I\}$. So the product relation is $\gamma = (Y, Z, H)$.

Definition 4. We will call the composition of the relation $\rho = (X, Y, G)$ with the relation $\gamma = (Y, Z, H)$ the following relation: $\gamma \circ \rho = (X, Z, H \circ G)$, where $H \circ G = \{(x, z) / \text{ there exists } y \in Y \text{ such that } (x, y) \in G \text{ and } (y, z) \in H\}$. In this case we will say that the element $x \in X$ is in the relation $\gamma \circ \rho$ with the element $z \in Z$, and we denote by $x \gamma \circ \rho z$.

Proposition 6. The element $x = (x_i)_{i \in I} \in \prod_{i \in I} X_i = X$ is in the relation $\gamma \circ \rho$ with the element $z = (z_i)_{i \in I} \in \prod_{i \in I} Z_i = Z$ iff for every $i \in I$ the element $x_i \in X_i$ is in the relation $\gamma_i \circ \rho_i$ with the element $z_i \in Z_i$.

Proof. We have $x \gamma \circ \rho z$ if and only if there exists $y \in Y$ such that $x \rho y$ and $y \rho z$. But $x \rho y$ and $y \gamma z$ means that for every $i \in I$ $x_i \rho_i y_i$ and $y_i \gamma_i z_i$, i.e. $x_i \gamma_i \circ \rho_i z_i$ for all $i \in I$. \Box

Let us consider the sets $(U_i)_{i \in I}$ and the binary relations $\sigma_i = (Z_i, U_i, J_i), i \in I$, where J_i is the graph of the binary relation σ_i . Let us denote by σ the product of the binary relations $(\sigma_i)_{i \in I}$. So $\sigma = \prod_{i \in I} \sigma_i$, i.e. $\sigma = (Z, U, J)$, where $Z = \prod_{i \in I} Z_i, U = \prod_{i \in I} U_i$ and $J = \{(z, u) \mid z \sigma u, z \in Z \text{ and } u \in U\}$.

Proposition 7. Let $\rho = (X, Y, G), \ \gamma = (Y, Z, H), \ \sigma = (Z, U, J)$ be three relations. Then $\sigma \circ (\gamma \circ \rho) = (\sigma \circ \gamma) \circ \rho$.

Proof. The proof is standard.

References

- [1] I.D. Ion, R. Nicolae, Algebră, Editura Didactică și Pedagogică, București, 1981.
- [2] I. Purdea, I. Pop, Algebră, Universitaria, Editura GIL, Zalău, România, 2003.
- [3] Gh. Fărcaş, Algebră, Editura Didactică și Pedagogică, București, 1979.

Béla Finta Department of Mathematics, "Petru Maior" University Tg.Mureş Nicolae Iorga street nr.1, 540088, Romania e-mail: fintab@upm.ro